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Abstract

Finite difference schemes for the evaluation of first and second derivatives are presented.
These second order compact schemes were designed for long-time integration of evolution equa-
tions by solving a quadratic constrained minimization problem. The quadratic cost function
measures the global truncation error while taking into account the initial data. The resulting
schemes are applicable for integration times fourfold, or more, longer than similar previously
studied schemes. A similar approach was used to obtain improved integration schemes.

Accsion For

NTIS CRA&l
DTIC TAB
Unannounced

Justification

Distribution /

Availability Codes
Avail and I or

Dist Special

"This research was made possible in part by funds granted to the second author through a fellowship program
sponsored by the Charles H. Revson Foundation and in part by the National Aeronautics and Space Administration
under NASA Contract No. NASI-19480 and NASI-18605 while the authors were in residence at ICASE. NASA
Langley Research Center, Hampton, Va 23681

° 777



1 Introduction

The simulation of hyperbolic partial differential equations often requires long-time integration.
The physical phenomena described by these equations typically possess a range of space and time
scales, turbulent fluid flow is a common example. Accurate numerical simulation of this type of
processes requires proper representation of all the relevant physical scales in the numerical model.
These requirements lead recently to new interest in Pade approximations also known as compact
finite difference schemes [7].

Compact finite difference schemes had long been known and used in numerical analysis [1, 2, 3].
They offer a means of obtaining high order approximations to differential operators using narrow
stencils. This is achieved by treating the sought derivatives as unknowns and solving a system of
equations for them. Typically, the resulting matrices are tridiagonal or pentadiagonal, which can
be efficiently solved

In [7] a class of highly accurate compact schemes for first, second and higher derivatives were
presented and analyzed. A notion of resolving efficiency was introduced which should measure
the accuracy with which the finite difference approximation represents the exact solution over
the full range of length scales that can be realized on a given grid. This criterion was then used
to compare various schemes and motivated the design of a new class of schemes, the so-called
schemes with spectrl like resolution. These are fourth order pentadiagonal systems with seven
points stencils. The;r improved resolution characteristics were obtained by giving up on high
formal accuracy; instead, requiring that the symbol of the discrete difference operator should
agree with the differential operator at three prescribed high frequencies. However, the resolving
efficiency is a too crude measure as it assumes that all frequencies oc'ur with similar magnitude in
the initial data. In the present paper it is shown that for problems with various initial conditions
these schemes are far from optimal.

A different measure for evaluating finite difference schemes is the L2 norm of the local trunca-
tion error. This measure which takes into account the Fourier components present in the solution
and their amplitude was applied in [9] to design explicit time marching schemes (i.e., discretiz-
ing time and space simultaneously) by solving analytically constrained minimizatiou problems
with quadratic cost. This error measure seems more adequate for comparing difference schemes.
However, the simultaneous treatment of time and space results in very complex optimization
problems. The generalization of the approach of [9] to problems in higher dimensions requires
solving nonlinear constrained optimization over a large set of parameters. It is also hard to apply
that approach to compact schemes. This complexity and the use of analytic rather than numerical
methods makes the suggested approach impractical.

In [4] a heuristic derivation was done by minimizing the weighted error (in the Fourier space)
of the discrete and continuous operators.

The present paper i'ses the same cost function as [9] with several important differences. First,
improved bounds on the truncation error were derived. These enabled us to treat time and
space discretizations separately. This greatly simplifies the minimization problem by reducing
it to two lower dimensional problems. Further simplification is obtained by optimizing each
partial derivative separately, instead of approximating the whole differential operator as was done
in [9]. These reductions of problem complexity resulted in a simple and general approach to
synthesis of discretization scheines. It enabled us to design highly accurate compact difference
schemes and integration formulas for various operators and initial data. The resulting second
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order approximations proved to be robust to perturbations in the spectrum of the initial data.
exhibiting.resolution superior to other known schemes.

The organization of the paper is as follows. In Section 2 Fourier analysis is used to obtain
bounds on the truncation error. In section 3 approximations to derivatives are presented, for the
first and second derivatives and first derivative at mid cell points. Appendices A-C list coefficients
for these derivatives for various stencils and initial conditions. Improved time integration schemes
are developed in section 4, and their coefficients are listed at Appendix D. Section 5 discusses
generalization of the present approach to more complex problems. Numerical results are presented
in section 6. Concluding remarks are made in section 7.

2 Bounds on the truncation error

The application of Fourier analysis for the design and evaluation of finite difference schemes can
be found in many sources, e.g., [9, 10]. In [12] the use of Fourier analysis in the numerical
approximation of hyperbolic problems is extensively discussed.

In the following section bounds on the L2 norm of the error in the discrete solution are derived,
accounting for the effect of discretization both in space and time. These estimates are used in
subsequent sections to design highly accurate schemes.

Consider a linear constant coefficient partial differential equation with periodic boundary
conditions of the form

Ou
--7 = Lu (2.1)

u(X,O) = UO(x) (2.2)

Further assume that the solution of equation (2.2) does not grow in time.
The discrete analog of this equation can be written as :

U n+1 = P(h, At)u' (2.3)
u0 = Uo (2.4)

where h is the meshsize in space, and P(h, At) is a stable finite difference approximation.
We would like to bound the L2 norm of the error in the discrete solution, for the initial uije

uo, given by :
e2(nAt; uo) = Iu(nAt) - 41il= li LnAt uo - P"(h, At)uoIl 2  (2.5)

In the sequel t will be used instead of nAt to simplify notation. The Fourier transform of eq.
(2.5) yields

I_ JeL(wh)t - Pn(wh)I Ito(wh)12 dw < (2.6)

J ,eL(~'h) eLh(wh))- + - Pn (wh)_) IJo(wh)j 2d&, (2.7)

Where Lh is the discrete operator approximating L, and L, j4 are their corresponding symbols.
Thus, the space and time discretizations errors can be bounded separately.
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Denote L(wh) = LR(wh) + LI(wh) for the real and imaginary parts of L(wh), respectively;
and use a similar decomposition for Lh(wh). Then

eL(wh)t _ eLh(wh)t = eL(wh)t (I - eh(wh)-L(wh)),t (tw (h)-LR(wh)),) (2.8)

The assumption that the solution does not grow in time implies that

IeL(wh)tI < I t > 0 (2.9)

Assume that the discrete solution does not grow in time, either. That is

IeLh(wh)t[ • 1 t > 0 (2.10)

For real numbers 0, a with a < 0, simple geometric consideratinns yield the following bound

11 - e' 8ea _• 10! + I - e"l (2.11)

Combining bounds (2.9) and (2.11) and assuming Lh(wh) - LR(wh) < 0 results in

le - •Z(h't It(wh) - LI(wh)lt + 11 - e(L•R(wh)-LR(wh))ij (2.12)

_ 14(wh) - LI(wh)lt + L,(wh) - LR(wh)!t (2.13)

If _hR(wh) - LR(wh) > 0, this bound can be obtained using the same argument when factoring

e L(wh)t in (2.8).
Denote by ,(t; uo) the error due to spatial discretization only, when the initial data is uo. For

a final time T, using (2.13) yields

2 (T; uo) <_T2 T _ (I(wh) - LI(wh)I + [Lh(wh) - LR(wh)I) fio(wh)I2 dw (2.14)

Therefore, a difference scheme minimizing the integral (2.14) with respect to initial value u0
will better resolve, in the L2 norm sense, the frequencies occurring in the solution.

The time integration operator satisfies

e- L'(wh)= (eth(wh't- P(wh)) E eL'(wh)jat•-n-(wh) (2.15)
3=1

Under the previous assumptions

je•'()At _ 1 (2.16)

!P(wh)I < 1 (2.17)

Therefore

I E eL ( Pnh)i -'f-r-(wh)l < Cn (2.18)
j=1

where C = 0(1). Hence

e - P(wh)l < CTA P(wh)l (2.19)
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Denote by e(t: uo) the error due to time discretization only, when the initial value is uo. For a
final time T, the bound (2.19) implies :

E2(T, uo) • (T) 2 J-! eLh)At _ P(wh)I 2Iito(Wh)I 2dw (2.20)- At _h

Combining of these estimates yields a bound on the L2 norm of the global truncation error:

2 U) •hf_ C1 Lh(A), P(h)] 2 (wh)I2d,
d(T; u0) <ý T 1 Li(wh) - L,(wh)l + ILR(wh) - LR(wh)j + P1

(2.21)
These estimates will be used in the following sections to design improved compact schemes and
integration formulas.

3 Approximating derivatives

3.1 Approximation of the first derivative

Consider a uniformly spaced mesh whose nodes are indexed by i and its meshsize is given by
h = V, where N+ 1 is the number of grid points. The variable at node i is xi = ih and the

function value at the nodes, f, = f(zi), are given for 0 < i < N. An approximation f" to the first
derivative J(x-) should be computed as a linear combination of the function values at neighboring
grid points. Compact finite difference schemes regard the approximation f" as unknown and a
system of equations is solved to approximate the first derivative at all nodes, simultaneously.
Thus, unlike in finite differences, the derivative at node i depends on function values at all other
nodes.

Following [71 we use approximations of the the form:

3f -+af 1 + A'.+," 1 +flf+ 2 C = c - fi-3 + bfi+2 - fL-2 + a fi+ 2- fi-I (3.1)

6h 4h 2h

A second order approximation can be obtained by adding a constraint that the Taylor expansion
on both sides should agree until the second order term. The following relation must hold :

a + b + c = 1 + 2a + 20 (3.2)

Higher order schemes may be obtained by further matching the next terms in the expansion [7].
However, in this paper merely second order accuracy is enforced.

The symbol of the differentiation operator is given by

L(wh) = iwh (3.3)

Whereas the symbol of the discrete approximation (3.1) is

jh(wh) = iasin(wh) + b sin(2wh) + • sin(3wh) (3.4)
1 + 2a cos(wh) + 23 cos(2wh)
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In view of the bound (2.14), define the following constrained minimization problem which its
solution should yield a compact scheme with improved resolution properties

min, ILh(wh) - L(wh)I' fi(wh)I'&dw (3.5)

under the constraint
a+b+c= 1+2a+2 2 (3.6)

where L(wh) and Lh(wh) are given by (3.3) and (3.4), respectively.
Although the problem was formulated as a constrained minimization problem, it can be trans-

formed by substitution to an unconstrained minimization problem on a reduced set of parameters.
Moreover, setting some of the parameters to zero further reduces the dimension of the problem.
Since tridiagonal systems of equations are more amenable to numerical solution than pentadi-
agonal ones, setting 0 = 0 seems a plausible choice. Similar considerations might suggest using
a narrower stencil obtained by setting c = 0, as well. All those possibilities are presented in
Section 6, and several sets of coefficients for different initial data are listed in Appendix A.

3.2 Approximation of the second derivative

The derivation of compact schemes for the second derivative proceeds in an analogous way to the
first derivative. The starting point is an approximation of the form

/•€"~ ~~ A-t f'a"+••2=cf+3 - 2fj + Ai-3 Af+2 - 2fi + A•-2 afi+1 - 2.fi + fi-I

• A'- 2 + afi- 1 + fi" + af" 1 + Ofi2 =IC+9h2I +f bf 4h2 + 4h h2 (3.7)
where fjf is the approximation to the second derivative at node i. Matching the Taylor series

coefficients on both sides of (3.7) yields condition (3.2) for the second order accuracy.
The symbol of the second derivative is given by :

L(wh) = - h2 (3.8)

The symbol of the discrete approximation (3.7) is :

- 2a (cos(wh) - 1) + A (cos(2wh) - 1) + & (cos(3wh) - 1) (39)

1 + 2a cos(wh) + 20 cos(2wh)

The constrained minimization problem which solution is the sought scheme can be formulated
as:

mTrin Lh (wh) - L(wh) 12 It(wh)12dw (3.10)

under the constraint
a + b + c = 1 + 2a + 203 (3.11)

Now, however, L(wh) and Lh(wh) are given by (3.8) and (3.9), respectively.
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3.3 Approximating first derivative on a cell centered mesh

The approximation of the first derivative at the cell centered mesh is of the form

f3 f A+ý - 4-1 f -fA2 f+a -f . 12
-2 + afi-i + f+ + b- +3h + a - 2 h 2 (3.12)

The second order of the approximation is guaranteed by condition (3.2).
The symbol of the differentiation operator is :

L(wh) = iwh (3.13)

While the symbol of the discrete approximation (3.12) is

Lh(wh) .2a sin(!-) + -b sin(-") + L sin(--)
= 1 + 2a cos(wh) + 2,3 cos(2wh)

A constrained minimization problem of the same type as in the previous sections was formulated
and solved for these symbols.

4 Approximation of the integration operator

The design of integration schemes is substantially limited by the stability requirement which
renders high order schemes computationally costly. It is well known [5] that an explicit kth order
Runge-Kutta method, with k > 4, should employ at least k+ 1 stages or function evaluations. This
large number of function evaluations makes high order schemes impractical. Therefore, efforts
have been made to obtain schemes of lower order with improved char cteristics. Within this
approach, the free variables in the Runge-Kutta schemes were set to yield better truncation error
[5] or extended stability region [6]. A generalization of this idea is to give up on formal accuracy
in order to obtain better approximation of the wavenumbers relevant to the problem solved.

The discrete time integration of linear constant coefficient partial differential equation

19- = Lu (4.1)

amounts to approximation of the exact discrete solution eLhtuo. Therefore, the integration scheme
may be written as

Pn(Lhat) = Zai(L hAt)i (4.2)
i=0

where ai may depend on Lh. The order of the integration scheme is determined by the number
of first terms ai which agrees with the Taylor expansion of ex.

The derivation of the integration schemes is similar to that of derivative discretization, i.e.,
a constrained quadratic optimization problem is formulated based on the error estimate (2.20).
The solution of this minimization problem yields an improved integration scheme. However, the
derivation of integration schemes is more involved than the generation of compact schemes since
the stability condition leads to a nonlinearly constrained minimization problem.
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Following (2.20) the next optimization problem is defined

min ; Ieth(wh)•t Pn(Lh(wh)At)121fi(wh) 2du (4.3)

subject to the constraints

__1

ai  0 •O i<p (4.4)

IP.(Lh(wh)At)l2  < 1 wE [ ](4.5)

where Lh is the discrete approximation of L and p is the order of the n stage formula. Condition
(4.4) can be treated by substitution, but the stability condition requires an explicit treatment.

In accordance with our general approach, we believe that second order formal accuracy suffices.
It remains to determine the number of stages in the integration formula. This should be chosen
to assure that the error in space and time discretizations (2.14) and (2.20), respectively, will be
of similar magnitude. In the present work five stage schemes of second order were investigated,
i.e., n = 5 and p = 2. Integration formulas were obtained for optimized seven point tridiagonal
compact schemes approximating the first derivative, and were tested for the advection equation
in one and two space dimensions.

An important feature of the present approach is that once a feasible minimum has been found
for a prescribed initial value and a given CFL number, the generated scheme will be stable for
this data. This might enable the use of somewhat larger time steps.

5 Approximation of differential operators

The method introduced in the previous sections for generating optimal finite difference approxi-
mations for derivatives and time integration schemes for linear constant coefficient equations can
be extended to more general equations. These ideas can be easily adapted to handle with similar
efficiency more involved problems.

The error bounds derived in Section 2 can be generalized for d dimensional problems; noting
that the same proof holds for the d dimensional case after changing the integration over [-P, W1

to multi integration over the box [-z, z]d. This suggests that approximation of the differen-
tial equat;on should be obtained by solving constrained optimization problems in d dimensional
Fourier space for a large set of parameters. For some equationb, sol*'ii,• il:s la;ge minimization
problem might be essential to achieve accurate schemes. Quite often, though, a set of simpler
minimization problems can be obtained by optimizing each partial derivative separately, resulting
in highly accurate approximations.

The approach, which was successfully tested in the present paper, divides the optimization
process into two stages. In the first stage a set of schemes are designed for a large enough
variety of typical initial data (e.g., Gaussians with different parameters, in our examples). This
precomputation is performed once and its results are used in subsequent simulations. In the
second stage, the actual simulation, the initial data u0 is Fourier transformed to obtain fio.
The discretization of the partial derivatives is determined by approximating hi0 as a product of
one dimensional functions for which optimized schemes werr designed. Each partial derivative



is discretized using the corresponding one dimensional optimized scheme. The time marching

scheme is selected from the set of scl iie corresponding to the approximating one dimensional

functions. In the present work the selection was done by computing the L2 error norni of ,ach

candidate integration scheme when applied to the approximate initial data with the alreadyv

determined discretizations. and selecting the minimum norm scheme. This computation, too. call

be done prior to the actual simulation for a large set of approximated initial data. Thusi, the
marching scheme selection can be done 1yv looking up in a precomputed table. The robustn.ess (of
the proposed schemes to perturbations in the initial data yvields t his opttimizatiion very eficiint:
as can be seen in the numerical results presented in Section 6. It should be noted that the

time required to obtain an appropriate scheme using this approach is negligible relalive to the

simulation time.
When the frequencies present in the solution change with time. e.g.. due to hnie dependent

source term, the computation of the optimized schemes should be repeated once a large cunitilat iv'
change has occurred. Still,.the relative cost of of this computation is miiinimal.

The Fourier transform gives the energy content of the whole initial data. It may occur. that

the initial data is sniooth at some regions of the computational domain and oscillatory in ot hers.

in which case the designed approximation will give good performances over the whole doiiiain.

One can do better by computing a differenit scheme for each region and using a weighted smii

of the resulting schemes near region boundaries. This requires computing the Fourier transform

locally in each region. The localization to a particulai region can be achieve by multiplying %t0 by

a ("C function with a compact support which encloses the region.
In some cases. systems of equations may be treated in a similar way. Look first at a one

dimensional first order system

ut = Au, (5.6)

u(x,O) = uo()

where A is a p x p symmetric matrix. Let A = P-1 AP be a diagonal matrix, and denote v = Pu.
The discretization of the system

vt = Av, (5.7)

v(X,O) = Puo(X)

can be done in an analogous way to the scalar case, except for the time marching scheme which
should be chosen from a set of candidate schemes (as for the multidimensional scalar equations).

Thus, highly accurate discretization of the system (5.6) can be achieved by first discretizing (5.7)
and using the identity u., = P-'v,. For systems in higher dimension

O' uut = ZA 49 (5.8)

i=1 X

U(x,O) = UO(x)

each partial derivative should be optimized separately. In this case, we require that all Ai will be
symmetric, but it is not necessary that they are simultaneously diagonalizable.

The proposed schemes might be useful for nonlinear equations, as well. There, one should
design the schemes for the linearized equation; and will be obliged modify them once a large
change in the amplitude of the wavenumbers appearing in the solution occur.



6 Numerit.-JI results

6.1 Apo iximation of derivatives

Th, constrained minimization problem (3.5) for the space discretization can be easily solved by
zubstitution using (3.2). Differentiation of the resulting quadratic form provides a set of necessary
conditions holding at the minimum. This nonlinear system can be solved using Newton method,
yielding a local minimum. Since the schemes obtained using this process significantly improve
previously known schemes [7], no attempts were made to find the other zeroes of the nonlinear
system, searching for better minima.

Three types of schemes were studied (a) tridiagonal with five points stencil, i.e., ;3 = c = 0
(b) tridiagonal with seven points stencil, i.e., j3 = 0, (c) pentadiagonal with seven points stencil.

The initial approximation to the Newton iteration was, typically, a compact scheme with the same
structure, taken from [7].

It can be observed, in figures 1 and 5, that the modulos of symbol of the optimized penta-
diagonal scheme for the first and second derivative is larger then the modulus of the differential
symbol. This error is exceedingly larger for schemes generated to approximate narrower spectra.
The overshooting occurs in the highest end of the spectrum for wavenumbers not appearing in
the solution. However, since the stability of a scheme is determined by the values assumed by
Lh(,,;h) [11], this type of scheme is applicable only with small CFL. Moreover, the desired ro-
bustness is limited by this phenomenon. Therefore, this behavior of the approximation can not
be ignored. A possible remedy can be found in searching for other minimizers of the quadratic
form. Using the tridiagonal scheme as initial approximation for the Newton process converged
to solut~ons without this limiting property but with reduced resolution, similar to the tridiago-

nal schemes. Other possible directions, e.g., further looking for other minima or penalizing in
the cost function for this behavior were not explored. This is since we believe that for practical
applications pentadiagonal systems are too costly to solve, whereas the tridiagonal schemes offer
similar resolution characteristics, are easier to solve and do not suffer from this deficiency. The
pentadiagonal scheme are given mainly for theoretical reasons as a counterpart to the spectral-like

approximations.
A proper appreciation of the superiority of the proposed schemes can be gained by integrating

with them hyperbolic equations for long time, provided the integration process introduces only
negligible numerical errors. This requirement necessitates either using high order integration
schemes or employing exact integration, as was done in the present work. The experiments
described in next subsections clearly demonstrate the superior behavior of the proposed optimized

schemes.

6.1.1 Approximation of the first derivative

Compact finite difference schemes were designed and tested for initial data of the form e-_ C
2 for

several values of a. In Figure 1, the symbols of schemes corresponding to a = 2 are plotted, as
well as the weighted error

IL(wh) - Lh(wh)I I (wh)l (6.9)
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for the more accurate schemes. The coefficients of the optimized schemes can be found in Appendix
A. The coefficients of the other schemes were taken from [7]. For scheme (a) the coefficients were

1 14 1a 0,a=-b-,c= 0 (a.10)
S9' 9

The coefficients of scheme (c) were

3 25 1
8 0 = 0,a = -,b =,c= (5.-

The coefficients of the spectral-like scheme (e) were

a = 0.5771439,I3 = 0.0896406, a = 1.3025166,b= 0.99355, c = 0.03750245 (6.12)

It can be seen that each optimized scheme better approximates the differential operator than
its nun-optimized counterpart. In Figure 1, one can observe that although the symbol of the
spectral-hke pentadiagonal scheme follows the differential symbol for more wavenumbers than the
tridiagonal scheme, the L'2 norm of truncation error of tridiagonal scheme is somewhat smaller
for this data. This can be explained by noting that the error of the tridiagonal scheme is mainly
in the high frequencies while the spectral-like scheme has large error at the smoother Fourier
components where the present initial data has more energy. The spectral-like scheme attains
better resolution at the expense of larger error in lower frequencies. The error in the optimizcd
schemes is significantly smaller than in their counterparts. More precisely, computing the error
norms reveals that the error in the tridiagonal scheme is about six times larger than in the
optimized tridiagonal scheme while error norm of the spectral-like scheme is about seventeen
times larger than in the optimized pentadiagonal. The plot of the absolute value of the error
also reveals that the L2 norm was used as a minimization ci:teria. This can be seen from the
several sign changes of the error of the optimized schemes, being in accordance with the averaging
property of the chosen norm.

Figure 2 demonstrates the better resolution of the optimized scheme by exact integrating in
Fourier space on a 32 points grid with the pentadiagonal spectral-fike scheme and the pentadiag-
onal optimized scheme the equation

aU _ U (6.13)
at Ox

cr = 0.8 (cr being the CFL number) was used. It is shown that at time T = 10000, the error in the
solution using the optimized scheme is smaller than the error at time T = 1000 when using the
spectral-like scheme. This suggests that the optimized scheme can be used for integration time
at least ten times longer than the spectral-like scheme, in close accordance with the ratio of the
error norms.

Figure 3 displays the scheme's robustness to perturbation in initial condition. The solution
integrated with the optimized scheme far better approximates the exact solution than the one
employing the spectral-like approximation, even for initial data different from the one it was
designed to resolve. This holds for both smoother and more oscillatory initial data. Although
those examples do not give a quantitative view on the relative efficiency of the schemes for those
initial data, one can see in both figures that by the time the solution with the optimized scheme
developed significant error the error in the one corresponding to the spectral-like scheme is so
large it no longer approximates the exact solution.
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Figure 4 shows a two dimensional equation which demonstrates the robus It ness of lhi proposed
scheiies. In this example the initial data was taken to be t he (aussiani r +$• rotated at an

angle of Then the program searched for initial data of the form i-'" •' + ). for the in t*'gers
< 1r1. 71. _< 7 which yielded the best approximation to the inlitial data. The ponladiagon al

al (I ý2 i, a ischemes optimized for initial data (-I and _ were then used to coinput, t i- and d
respectively. In this example it = 3 and n-2 = 2. The resulting semi discrete system was solved
1) exact integration in Yourier space on a :32x:32 grid. The plot shows a cut through O lsolutlion in)
the r direction containing the inaxi muin point of the solution. While t. he solution corresponding
to the optimized disretization closely approximates the exact solution, the solution discrelizod
with the spectral-like scheme bears very little rosemblance to the exact solution.

6.1.2 Approximation of the second derivative

The coefficients of compact schemes for various initial conditions of the form f `2 can he found
in Appendix B.

Figure 5 plots absolute value of the symbol of the second derivative and the weighted error.
for a = 2. The parameters of the optimized schemes can be found in Appendix B. The coefficients
of the other schemes were taken from [7]. Scheme (a) is given by

2 12 3
a = , = 0, a = -,b= -- ,r = 0 (6.1.1)

1111 11

The coefficients of scheme (c) are

9 , 696- 1191a 2454a - 294 1179a - 344

a 3T8 = 0,a 428 - 535 1 2140 (6.15)

The coefficients of the spectral-like pentadiagonal scheme (e) are :

a = 0.50209266, f = 0.05669169, a = 0.21564935, b = 1.723322, c = 0.1765973 (6.16)

It can be seen that the error in the non optimized schemes is significantly larger than in the
optimized ones. It is interesting to note that, again, for this specific data the L2 error norm of
the spectral-like scheme is about an order of magnitude larger than the non optimized tridiagonal
scheme. This phenomenon suggests that the resolution efficiency is a poor estimate for discretiza-
tions evaluation. Computing the error norms reveals that the error in the optimized tridiagonal
scheme is about seven times smaller than in the non optimized scheme, whereas the error in the
optimized pentadiagonal scheme is seventy times smaller than the spectral-fike scheme, for this
given data.

The efficiency of the pentadiagonal schemes was compared by integrating the wave equation

t21 192 11 (6.17)

(9t2  X

This equation was put in a system form :

2 01 (6.18)v 0



This system was exact integrated on a 32 points grid and the results are given in Figures 6
demonstrating the improved accuracy of the optimized scheme and its robustness. respectively.
Figure 6 demonstrates thaf the optimized scheme can be used for integration time 37 times, or
more, longer than the spectral-like scheme. In Figure 7 the sc! me robustness is clearly shown for
initial data smoother or more oscillatory than the data for whicil the scheme was design0•d. In both
cases, by the time a significant error occurs in the solution discretized with the optimrized scheme
the solution corresponding to the spectral like scheme totally differs from the exact solution.

The initial solution and its approximation, for the two dimensional problem in Figure 8 were
obtained similarly to those of the example in Figure 4. While the solution integrated with the
optimized scheme closely approximates the exact solution, it is hard to see that the solution
corresponding to the spectral-like scheme indeed approximates the same problem.

6.1.3 Mid cell approximation of the first derivative

Appendix C lists the coeflicients of schemes designed for various initial data. The coefficients of
the schemes taken from [7] are listed below. Scheme (a) is given by :

=-3 = 0, a = 3 -2a),b= (22a-1),c=0 (6.19)
62' 888

The coefficients of scheme (c) are :

75 37950 - 39725a _ 65115a - 3350 25669a - 6114 (6.20)
35 = 4j5-4, 0, a = 31368 ' 20912 , C 62736

The coefficients of the tenth order pentadiagonal scheme (f) are :

96850 9675 683425 b 505175 69049(6.21)

288529' 577058' 865587 577058 11731174

The standard compact schemes give very good resolution in this form (see Figure 9), thus.
the improvement introduced by the optimized schemes is smaller. Optimizing the tridiagonal
scheme yields a 6.5 smaller error norm while optimizing the pentadiagonal scheme yields a 2.5
times smaller norm. In this case, the error norm of the optimized tridiagonal scheme is very close
to that of the non optimized pentadiagonal scheme.

An interesting option suggested by this approach was to optimize the 4 operator in order to

get the best approximation for for given initial values. This has been done for the tridiagonal
scheme which was used to integrate equation (6.17). It was compared, in Figure 10, to the
tridiagonal schemi rom [7] where both are used to approximate the second derivative in solving
the one dimensional wave equation in the system form (6.18). Again, the optimized scheme gives
significantly better approximation.

6.2 Approximate time integration

The constrained minimization (4.3)--(4.5) was solved by requiring that the solution will touch
the stability constraint at one point while maintaining global stability and and minimizing the

functional. The point which gives best result was found by exhaustive search. This straightforward
approach yielded the local minima reported in this paper. Somewhat better integration schemes
might be achieved by using more advanced optimization techniques (8].
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According to the general approach outlined in Section 5, one should choose an integration
scheme which yields truncation error of similar magnitude in time and space. Since the stability
region for several fifth order six stages explicit Runge-Kutta schemes intersects the imaginary
axis only in a small neighborhood of the origin [5, 6] disabling time marching with large CFL, the
optimized scheme was compared with the four stage fourth order Runge-Kutta. We preferred this
five stage scheme which has an error norm about five times larger than the space discretization .o
the seventh order scheme which yields an error norm about eleven times smaller than the space
discretization because of its lower computational cost.

The analysis performed in Section 2 suggests that the integration operator should be opti-
mized with respect to the spatial discrete operator employed, i.e.. to minimize 111p(Lh(wh)At) -
eLh(wh)At lIL2 In the following examples Lh is the tridiagonal approximation for d, when initial

data is -22 and o = 0.8. Appendix D contains the coefficients of integration schemes for various
initial data when Lh is the tridiagonal scheme optimized for the same initial data and a = 0.8.

Figure 11 plots the real and imaginary parts of eLh(wh)At versus the four stage fourth order
Runge-Kutta and the improved scheme. The norm of the imaginary part of the error was reduced
by a factor of 31 while its real part was reduced by merely a factor of 2.3.

Figures 12-13 shows the integration of the advection equation with those scheme on a 32 points
grid, lemonstrating the superior efficiency and robustness of the proposed schemes. In Figure 12
one cý,n see that the optimized scheme can be used for at least three times longer integration time
than the Runge-Kutta scheme applied to the tridiagonal scheme from [7]. The computed error
norms suggests the time marching error is dominant in all examples.

The two dimensional example in Figure 14 summarizes the approach suggested in this work.
It compares the optimized tridiagonal scheme combined with the appropriate integration formula,
to fourth order Runge Kutta applied to non-optimized tridiagonal discretization. Although the
analysis in Section 2 applies only to constant coefficient problems, this example shows it holds,
heuristicly, to variable coefficient equations, as well. The initial data for this problem was obtained
in a similar manner to that in example 4. However, instead of comparing the solutions computed
on the 32 x 32 grid to the exact solution, they are compared to the solution on a 64 X 64 grid
which was integrated with the optimized scheme designed for the narrowest computed Gaussian
(a = 7). The initial data for the finer grid was obtained by bilinear interpolation from the coarser
grid. It can be seen that the optimized scheme yields significantly more accurate solution.

7 Conclusion

A simple and general approach for the design of finite difference approximation of derivatives
and integration formulas was introdulced. It was used to design compact finite difference schemes
for derivatives evaluation; and the resulting schemes were compared to previously known similar
schemes. The guiding line has been to improve the representation of the range of wavenumbers
appearing in the physical problem being solved, taking into account their relative amplitudes.
This lead to an L2 measure of the approximation. The resulting schemes combined adaptivity to
the specific initial data by the nature of their design and robustness to perturbations in the initial
data . The improved resolution had been demonstrated for several problems.

A similar approach was used to design improved integration schemes, taking into account the
spatial discretization as well as the initial data.

13



The approach suggested in this paper for optimizing discrete operators can be similarly applied
to higher. derivatives. Its applicabifity to more general and complex operators should be further
investigated.

The use of these ideas to design boundary conditions will be presented elsewhere.

14



A Coefficients of first derivative approximations for various ini-
tial conditions

[u 1i schemes with -= c = 0
e a = 0.3793894912, a = 1.575573790. b = 0.1832051925

e- a = 0.3534620453, a = 1.566965775, b = 0.1399583152

e23;'• a = 0.3461890571, a = 1.5633098070, b 0.1290683071
e-4-2 a = 0.3427812069, a = 1.5614141543, b = 0.124148259

a = 0.3408027739, a = 1.5602604992, b -- 0.121345048
e-6-7 a = 0.3395099051, a = 1.5594855939, 5 = 0.119534216

-' a = 0.3385987444, a = 1.5589295176,b = 0.1182679712

i__o_ schemes with 2 = 0
L a = 0.4303030674, a = 1.5567577428, b = 0.3451622238, c = -0.0413138317

e-2• a = 0.3991476265, a = 1.5636386371, b = 0.2563784492, c = -0.0217218334
e-3w'• a = 0.3904091387, a = 1.5638887738, b = 0.2348222711, c = -0.0178927675

-47 ca = 0.3863287472, a = 1.5637497712, b = 0.2252138483, c = -0.0163061252
e-5-" a = 0.3839604005, a 1.5635937780, b = 0.21976694619, c = -0.0154399233

a = 0.3824122042, a = 1.5634617985, b = 0.21625718276, c -0.0148945794
e-_77_ a = 0.3813206436, a = 1.5633544597, b = 0.21380659696, c = -0.0145197694

fio general schemes
e" ca = 0.5779403671, /3 = 0.0890143475

a = 1.3030269541, b = 0.994883769, c = 0.0359987066
e•a = 0.5801818925, fl = 0.0877284887

a = 1.3058941939, b = 0.9975884963, c = 0.0323380724
e-37 a = 0.5821143744, /3 = 0.0867224075

a = 1.3086733956, b = 0.9990906893, c = 0.0299094788

e 4- a = 0.5831688320,/3 = 0.0862000893
a = 1.3102698137, b = 0.9997174262, c = 0.0287506026

e-s•, a = 0.5838221871, /3 = 0.0858844217
a = 1.3112828763, b = 1.0000513827 , c = 0.0280789585

e-67 ca = 0.58426518608, /3 = 0.0856735831
a = 1.31197935750, b = 1.00025665126, c = 0.02764152958

ea = 0.58458494112, /3 = 0.08552292859
a = 1.31248665912, b = 1.00039487751, c = 0.02733420278
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B Coefficients of second derivative approximations for various
initial conditions

flo schemes with /3 = =

e-wý? a = 0.2285657609, a = 1.0139538409, b = 0.4431776810
a = 0.2028150072, a = 1.0598135170, b = 0.3458164974

a = 0.1952770765, a = 1.0716695072, b = 0.3188846458

e-4w'• a = 0.1917151916, a = 1.0770076313, b = 0.3064227519

0a = . 1896428309, a = 1.0800332355, b = 0.29925242633
e- a = 0.18828772017, a = 1.0819792783, b = 0.29459616204

_-7__ a = 0.18733255632, a = 1.0833354275, b = 0.29132968512

Ischemes with /3 = 0

e-w' a = 0.3125176074, a = 0.7701351999, b = 0.9469577413, c = -0.0920577265
e-2w2 a = 0.2702488609, a = 0.8863525584, b = 0.7065172637, c = -0.0523721002
e-3 a = 0.2580699f54 , a = 0.9170322739, b = 0.6425330979, c = -0.0434255409

e-4w' a = 0.2523894606, a 0.9308701065, b = 0.6135153110, c -0.0396064963
e-5w a = 0.2491062584, a = 0.9387256232, b = 0.5969863585, c -0.0374994649

e-6-' a = 0.2469677390, a = 0.9437849227, b = 0.5863166347, c = -0.0361660793
e-7- a = 0.2454642305, a = 0.9473144209, b = 0.5788609571, c = -0.0352469171

fo general schemes

e- a = 0.5024750577, /3 = 0.0554440666
a = 0.2150536435, b = 1.7246523136, c = 0.1761322914

e"2w2 a = 0.5041582074,/3 = 0.0527585356
a = 0.2120465713, b = 1.7488409942, c = 0.1529459205

e-3- a = 0.5053986368, /3 = 0.0512444502
a = 0.2112256102, b = 1.7609579037, c = 0. 1411026601

e-4w2 a = 0.5061009898, /3 = 0.0504756862
a = 0.2110263782, b = 1.7667867767, c = 0.1353401973

a = 0.5065435817,/3 = 0.0500170894
a = 0.2109783634, b = 1.7701652358 , c = 0.1319777431

a = 0.5068465815, /3 = 0.0497133535
a = 0.2109761550, b = 1.7723629924, c = 0.1297807226

-a = 0.5070666579 /3 = 0.0494975852
a = 0.2109890794, b = 1.7739051293, c = 0.1282342776
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C Coefficients of mid cell approximation of the first derivative
for various initial conditions

fto .schemes with = = 0

e--' a = 0.1824466564, a = 0.9847348088, b = 0.3801585039

C"2u)2 a = 0.1621215357, a = 1.0026558711, b = 0.3215872003
e-3," a = 0.1560892225, a = 1.0076143702, b = 0.3045640747

e -4w a = 0.1532174394, a = 1.0099120548, b = 0.2965228240

c- 5W2 a = 0.1515399131, a = 1.0112348225, b = 0.2918450036
C-6W2 La = 0.1504402935, a = 1.0120939889, b = 0.2887865980
C- 7- a = 0.1496639344, a = 1.0126967653, b = 0.2866311035

[ U~o Itschemes with 3 = 0

e-w•2 a = 0.2803531992, a = 0.8656018611, b = 0.7202754832, c = -0.0251709460
e-2-'2 a = 0.2421691108, a = 0.9108711860, b = 0.5897758895, c = -0.0163088538

e-3w c a = 0.2311768224, a = 0.9233491904, b = 0.5531540626, c - -0.0141496081
e-4w2 a = 0.2260281312, a = 0.9290969691, b = 0.5361564844, c = -0.0131971911
e- 5w2 a = 0.2230456380, a = 0.9323967450, b = 0.5263571378 ,c = -0.0126626068
e-• ow a= 0.2211004185, a = 0.9345368034, b = 0.5199847302, c = -0.0123206966
e-7- , a= 0.2197316282, a = 0.9360368674, b = 0.5155096846, c = -0.0120832956

fio general schemes

e-1:2 a = 0.3392424034, /3 = 0.0126851467
a = 0.7880308119, b = 0.8956208871, c = 0.0202034010

e a = 0.3364203680, / = 0.0159838314
a = 0.7894607720, b = 0.8790559502, c = 0.0362916767

e-3•2 a = 0.3359766282, 3 = 0.0164557610
a = 0.7895453413, b = 0.8768367139, c = 0.0384827231

e-"4w2 a = 0.3358345755, /3 = 0.0166014190
aO.78955615727, b = 0.87616875736, c = 0.03914707436

e- U ca = 0.33577201042, /3 = 0.01666433833
a = 0.78955722003, b = 0.87588406207, c = 0.03943141540

e6-62 ca = 0.33573907328, / = 0.01669706335
a = 0.78955658369, b = 0.87573722427, c = 0.03957846531

a = 0.33571963682, /3 = 1.67162152050
a = 0.78955572985, b = 0.87565178238, c = 0.03966419181
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&o schemes with 3 = 0, designed to approximate T 1J

e• • = 0.2949304593, a = 0.84173898079, b = 0.7718938474, c = -0.0294227367 1
e- •a = 0.2482825125, a = 0.9037600128, b = 0.6104318128, c = -0.0176268008

e! - ft = 0.2349387889, a = 0.9190859222. b= 0.56,56763:757, c = -0.01-48847202

e a = 0.2287385754, a = 0.9260661646, b = 0.5451127700, c = -0.0137017838 I
e a = 0.2251628777, a 0.9300484196, b 0.533:322898.= -0•01304556271
C - = 0.2228371850, a = 0.9326209622, 6 = 0.5256822919, c -0.0 1262888-1

_____ ta = 0.2212037269, a = 0.9344193325. b = 0.52032910793, c = -0.0123409866;

D Coefficients of time integration scheme

fio IIthird order schemes designed for a = 0.9 having ao = 1, aI = 1, a2

e-'2w a3 = 0.166281 , a 4 = 0.0397196 , a5 = 0.0076705
eý3-7- a3 = 0.166407 a4 = 0.0409525 , as = 0.0074510

-44- a3 = 0.1664488, a 4 = 0.04111513, a5 = 0.00739737

e- s• a3 = 0.1664805, a 4 = 0.04121264, a5 = 0.00736302

e-6Lu a3 = 0.1665028, a4 = 0.04128218, a5 = 0.00733301

e- 7w a3 = 0.1665207, a 4 = 0.04133150, a5 = 0.00731074
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Figure 1: Symbols (left) and absolute value of error (right) for d ,io = ef2w2 . (a) Sixth 3rder

tridiagonal scheme (/9 = c = 0) (b) Second order optimized tridiagonal scheme (3 = c = 0) (c)
Eighth order tridiagonal scheme (/3 0) (d) Second order optimized tridiagonal scheme (i3 = 0)
(e) Spectral-like pentadiagonal (f) Optimized pentadiagonal. (g) Exact symbol. Schemes were
optimized for fio = e-2W2 ,
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Fagur, 2: Long time integration of the equation u• = u•, Uo = e-2w2 r = 0.8. (a) Pentadiagonal
scheme optimized for fto = e- 2 2 (b) Spectral-like pentadiagonal scheme (c) Exact solution.
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Figure 3: Long time integration of the equation ut = ux, (7 = 0.8. Initial solution on the left
figure was uo = C,; on the right figure it was u0 = e-4W2.

(a) Pentadiagonal scheme optimized for 1L0 = e-2W2 (b) Spectral-like pentadiagonal scheme (c)

Exact solution.
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tridiagonal scheme () = c = 0) (b) Second order optimized tridiagonal scheme (,3 = c = 0) (c)
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Figure 6: Long time integration for t t uTx, ,, -a - 0. 8. (a) Pentadiagonal scheme
optimized for fo = -'2, 2 (b) Spectral-like pentadiagonal scheme (c) Exact solution.

23



T = 3200. T = 16000.

0.15 . 0.15 * ", 

- '° 
abb

0.10

0.05 C.
o.oo 

\ "
S... a "...: 

:.. 

0.05

-0. I00- 

.5 
•

-0.05 
a.. a

Sb
-C

-0.10 * -0.05 I * I

0 2 4 6 0 2 4 6
x x

Figure 7: Long time integration for utt = o * = 0.8. Initial solution on the left figure was
o = e-•; on the right figure it was fio = e-4,,2 . (a) Pentadiagonal scheme optimized for

o= e-2'U2  (b) Spectral-like pentadiagonal scheme (c) Exact solution.
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Figure 8: Long time integration for uti = uz, + uy, or = 0.8 using pentadiagonal schemes.

Initial solution on the left figure was fi0 e -(w+5]) rotated at an angle of E. This data

was approximated by unrotated gaussian 1-(3w,+2w) (a) Optimized pentadiagonal scheme (b)
Spectral-like p,,ntadiagonal (c) Exact solution.
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d2scheme (b) Tridiago~al mid-ceU discretization scheme of --I optimized to approximate 1ý when

fio =e- 2W2 (c) Exact solution.
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Figure 11: Real and imaginary parts of approximations to eLA(), where Lh(w) is the symbol
of the tridiagonal scheme for T- optimized for uo = e2w and or = 0.8. (a) Five stage scheme
optimized for the same o, (b) Fourth order Runge-Kutta (c) Exact time integration.
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Figure 12: Integration of ut = U, to e- o = 0.8. The space derivative is computed using
the tridiagonal compact scheme optimized for the same initia! date and a. (a) Five stage scheme
optimized for this scheme and CFL (b) Fourth order Runge Kutta (c) Exact time integration
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Figure 13: Integration of ut = us, a = 0.8. Left: ui0 = e-,; Right: fUo = e4` 2 . (a) Five
stage scheme optimized for this scheme and CFL (b) Fourth order Runge Kutta (c) Exact time
integration.
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Figure 14: Integration of ut =u-- + 0.5(l + O.6sin(21ry))u,,> 0= 0.8 using tridiagonal schemes.
Initial solution was u0o e-( +2l rotated at an angle of 7.This data was approximated
by unrotated gaussian I-3+w) (a) Optimized tridiagonal scheme and optimized marching

scheme (b) Tridiagona] scheme integra~ted with fourth order R~unge-Kutta. (c) A fine grid solution
(practically exact)
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